显示双语:

Quel est le lien entre un robinet qui 00:02
goûte l'ensemble de mandelbrotte, une 00:03
population de lapin, la convection 00:06
thermique dans un fluide et l'activation 00:08
des neurones dans votre cerveau ? C'est 00:10
cette simple équation. 00:13
Disons que vous voulez modéliser une 00:20
population de lapin avec X lapin cette 00:21
année, combien en aurez-vous l'an 00:25
prochain ? Et bien le modèle le plus 00:26
simple que je puisse imaginer consiste 00:29
simplement à multiplier par un certain 00:31
nombre le taux de croissance R qui 00:33
pourrait être disons 2 et cela 00:35
signifierait que la population 00:37
doublerait chaque année. Le problème 00:38
c'est que le nombre de lapins 00:40
augmenterait sans cesse de façon 00:41
exponentielle. 00:43
Donc je peux ajouter le terme 1 - x pour 00:45
représenter les contraintes de 00:48
l'environnement. Et ici, j'imagine que 00:49
la population X est un pourcentage du 00:52
maximum théorique. Donc elle va de 0 à 00:55
1. Et à mesure qu'elle s'approche de ce 00:57
maximum, ce terme tend vers zéro et cela 01:00
limite la population. 01:03
Donc voici la méthode logistique. 01:05
Xn + 1 est la population de l'année 01:08
prochaine et Xnulation de cette année. 01:11
Et si vous tracez la population de 01:14
l'année prochaine en fonction de celle 01:15
de cette année, vous voyez que c'est 01:17
juste une parabole inversée. C'est 01:18
l'équation la plus simple que vous 01:20
puissiez faire qui a une boucle de 01:22
rétroaction négative. Plus la population 01:23
devient grande ici, plus elle sera 01:26
petite l'année suivante. Alors, essayons 01:28
un exemple. 01:30
Disons que nous avons affaire à un 01:33
groupe de lapins particulièrement 01:35
tactif. Donc R est ég à 2,6. 01:36
Choisissons une population initiale à 40 01:41
% du maximum, soit 0,4 01:43
multipli par 1 - 0,4 on obtient 0,624. 01:47
Donc la population augmenté la première. 01:52
>> Mais ce qui nous intéresse vraiment, 01:57
c'est le comportement à long terme de 01:59
cette population. Donc on peut remettre 02:01
cette population dans l'équation. Et 02:03
pour aller plus vite, on peut en fait 02:05
taper 2,6 fois réponse x 1 mo réponse. 02:07
On obtient 0,61. Donc la population a un 02:12
peu diminué. Appuyez encore une fois 02:14
0,619 0,613 02:16
0,617 02:19
0,615 02:21
0,616 02:23
0,615. 02:24
En continuant d'appuyer sur entrée, la 02:26
population ne change presque pas. Elle 02:28
s'est stabilisée comme dans la nature où 02:30
les populations restent constantes qu'en 02:32
essence et décès s'équilibre. 02:35
Je veux maintenant faire un graphique de 02:38
cette itération. Vous voyez ici qu'elle 02:39
atteint une valeur d'équilibre de 0,615. 02:41
Que se passerait-il si je changeais la 02:46
population initiale ? Je vais simplement 02:48
déplacer ce curseur ici. Et ce que vous 02:50
voyez c'est que les premières années 02:52
changent 02:54
mais la population d'équilibre reste la 02:56
même. 02:58
Donc on peut essentiellement ignorer la 03:00
population initiale. 03:02
Donc ce qui m'intéresse vraiment c'est 03:04
comment cette population d'équilibre 03:06
varie en fonction de R le taux de 03:08
croissance. 03:10
Et bien comme vous pouvez le voir, si je 03:12
diminue le taux de croissance, la 03:14
population d'équilibre diminue. Ça a du 03:16
sens. Et en fait si R descend en dessous 03:19
de 1, et bien alors la population chute 03:22
et finit par disparaître. 03:24
Donc ce que je veux faire, c'est tracer 03:27
un autre graphique où sur l'axe des 03:29
abscisses, j'ai R, le taux de 03:31
croissance. Sur l'axe désordonné, je 03:33
trace la population d'équilibre, celle 03:36
obtenue après de très nombreuses 03:38
générations. 03:40
Pour de faible air, les populations 03:42
s'éteignent toujours. L'équilibre est 03:44
donc zéro. 03:46
Lorsque R atteint 1, la population se 03:48
stabilise et plus R est élevé, plus la 03:51
population d'équilibre est élevée. 03:53
Jusqu'ici, tout va bien. Mais 03:57
maintenant, voici la partie étrange. 04:00
Une fois que R dépasse 3, le graphique 04:02
se divise en 2. 04:05
Pourquoi ? 04:07
>> Que se passe-t-il ? Et bien peu importe 04:08
combien de fois vous itérez l'équation, 04:11
elle ne se stabilise jamais sur une 04:13
seule valeur constante. Au lieu de cela, 04:14
elle oscile d'avant en arrière entre 04:17
deux valeurs. 04:19
>> Une année, la population était plus 04:20
élevée, l'année suivante, elle est plus 04:22
basse puis le cycle se répète. 04:23
La nature cyclique des populations est 04:25
également observée dans la nature. Le 04:27
nombre de lapins varie d'une année à 04:29
l'autre, parfois plus, parfois moins. À 04:31
mesure que R continue d'augmenter, la 04:34
fourchette s'écarte puis chacune se 04:36
divise à nouveau. 04:38
Maintenant, au lieu d'osciller entre 04:41
deux valeurs, les populations traversent 04:42
un cycle de 4 ans avant de se répéter. 04:45
Puisque la durée du cycle ou période a 04:48
doublé, on appelle cela des bifurcations 04:50
par doublement de période. En augmentant 04:52
R, on observe plus de bifurcation par 04:55
doublement de période. Elles arrivent de 04:57
plus en plus rapidement menant à des 04:59
cycles de 8 16 32 64. Puis tel que 05:01
lorsque R atteint 3,57 au chaos. La 05:05
population ne se stabilise jamais. Elle 05:09
fluctue comme si c'était au hasard. 05:11
Cette équation a été l'une des premières 05:14
de méthodes pour générer des nombres 05:15
aléatoires sur ordinateur. Cela 05:17
permettait d'obtenir de l'imprévisible 05:19
d'une machine déterministe. 05:21
Aucun motif ni répétition ici. Si vous 05:24
connaissiez les conditions initiales 05:27
exactes, vous pourriez calculer 05:29
précisément les valeurs. Donc on les 05:30
traite comme des nombres pseudo 05:32
aléatoires. On pourrait croire 05:33
l'équation restera chaotique, mais 05:36
l'ordre revient avec l'augmentation de 05:38
R. 05:40
Il y a ces fenêtres de comportement 05:41
périodique stable au milieu du chaos. 05:43
Par exemple, si R vaut 3,423, on observe 05:46
un cycle stable de 3 ans et à mesure que 05:49
R continue d'augmenter, il se divise en 05:52
6 12 24 et ainsi de suite avant de 05:55
revenir au chaos. En fait, cette 05:58
équation comporte des périodes de toute 06:00
longueur 37, 51, 1052, tout ce que vous 06:02
voulez si vous avez simplement la bonne 06:07
valeur de R. 06:09
Ce diagramme de bifurcation ressemble à 06:13
un fractal. 06:16
Les caractéristiques et la grande 06:18
échelle se répètent à des échelles plus 06:19
petites. 06:21
Et en effet, si vous zoomez, vous voyez 06:23
qu'il s'agit en fait d'un fractal. 06:25
Le fractal le plus connu est l'ensemble 06:28
de Mandelbrot. 06:30
Le rebondisement, c'est que le diagramme 06:32
de bifurcation fait partie de l'ensemble 06:34
de Mandelbrot. 06:36
Est-ce que ça fonctionne bien ? Petit 06:39
rappel sur l'ensemble de Mandelbrot, il 06:41
est basé sur cette équation itérée. Donc 06:44
la façon dont cela fonctionne, c'est que 06:47
vous choisissez un nombre C, n'importe 06:48
quel nombre dans le plan complexe, puis 06:50
vous commencez avec Z = 0 et ensuite 06:52
vous itérez cette équation encore et 06:55
encore. Si ça diverge vers l'infini, 06:56
alors le nombre C ne fait pas partie de 06:59
l'ensemble mais si ce nombre reste fini 07:00
après un nombre illimité d'itération, 07:03
alors il fait partie de l'ensemble de 07:06
Mandelbro. 07:08
Essayons par exemple C = 1. Donc on a 0 07:10
au carré + 1 ce qui donne 1. Ensuite 1 07:13
au carré + 1 = 2 au carré + 1 = 5 au 07:16
carré + 1 = 26. Donc on voit assez 07:21
rapidement qu'avec c = 1, cette équation 07:25
va diverger. Donc le nombre 1 ne fait 07:28
pas partie de l'ensemble de Mandelbrot. 07:30
Et si on essaye c = -1, et bien on a 0² 07:33
- 1 = -1 - 1² - 1 = 0. Et donc on 07:38
revient à 0² - 1 = -1. On voit donc que 07:45
cette fonction va continuer à osciller 07:50
entre -1 et 0. Donc elle restera finie. 07:53
Et donc c = -1 fait partie de l'ensemble 07:56
de mandel brot. Normalement, quand on 08:00
voit des images de l'ensemble de 08:01
Mandelbrot, elle montre juste la 08:03
frontière entre les nombres qui font que 08:05
cette équation itérée reste finie et 08:07
ceux qui la font divergé, mais elle ne 08:09
montre pas vraiment comment ces nombres 08:11
restent finis. Ce qu'on a fait ici, 08:12
c'est queon a réellement itéré cette 08:15
équation des milliers de fois puis on a 08:16
tracé sur l'axe Z la valeur que prend 08:19
effectivement l'itération. Donc si on 08:21
regarde de côté, ce que vous verrez en 08:23
fait, c'est le diagramme de bifurcation 08:25
qui fait partie de cet ensemble de 08:26
Mandelbrot. Alors, que se passe-t-il 08:28
vraiment ici ? Bien ce que cela nous 08:29
montre, c'est que tous les nombres dans 08:31
la cardioïde principale finissent par se 08:33
stabiliser sur une seule valeur 08:34
constante. Mais les nombres dans cette 08:36
bulbe principale, eux finissent bon par 08:37
osiller entre deux valeurs. Et dans 08:40
cette bulbe, ils ossillent entre quatre 08:41
valeurs. Ils ont une période de 4 puis 8 08:43
puis 16 32 et ainsi de suite. Puis on 08:46
atteint la partie chaotique. La partie 08:49
chaotique du diagramme de bifurcation se 08:51
trouve ici sur ce qu'on appelle 08:52
l'aiguille de l'ensemble de Mandelbro, 08:54
là où l'ensemble de Mandelbrot devient 08:56
très fin. Et vous pouvez voir cette 08:58
médaille ici qui ressemble à une version 08:59
plus petite de l'ensemble de Mandelbro 09:01
entier. Et bien ce que cela nous montre 09:03
c'est que tous les nombres dans la 09:05
cardioïde principale finissent par se 09:06
stabiliser sur une seule valeur 09:08
constante. Mais les nombres dans cette 09:09
bulbe principale eux finissent par 09:11
osiller entre deux valeurs et dans cette 09:13
bulbe oscillent entre quatre valeurs. 09:15
Ils ont une période de 4 puis 8 puis 16 09:17
32 et un ainsi de suite. Puis on atteint 09:21
la partie chaotique. La partie chaotique 09:23
du diagramme de bifurcation se trouve 09:25
ici sur ce qu'on appelle l'aiguille de 09:27
l'ensemble de Mandelbrot. là où 09:29
l'ensemble de Mandelbrot devient très 09:31
fin et vous pouvez voir cette médaille 09:32
ici qui ressemble à une version plus 09:34
petite de l'ensemble de Mandelbrot 09:36
entiers. Et bien cela correspond à la 09:37
fenêtre de stabilité dans le diagramme 09:39
de bifurcation avec une période de 3. 09:41
Maintenant le diagramme de bifurcation 09:44
n'existe que sur la droite réelle parce 09:45
que on a mis que des nombres réels dans 09:48
notre équation. Mais toutes ces bulbes 09:50
en dehors de la cardioïde principale et 09:52
bien elles ont aussi des cycles 09:55
périodiques de par exemple 3 4 ou 5. Et 09:57
donc on voit ces images fantomatiques 10:01
répétées si on regarde sur l'axe Z. En 10:04
fait, elles oscillent aussi entre ces 10:07
valeurs. 10:09
Personnellement, je trouve cela 10:15
extraordinairement beau, mais si vous 10:17
êtes plus pragmatique, vous vous 10:19
demandez peut-être est-ce que cette 10:20
équation modélise réellement des 10:23
populations d'animaux ? Et la réponse 10:24
est oui. En particulier dans les 10:26
environnements contrôlés que les 10:28
scientifiques ont mis en place dans les 10:30
laboratoires. Ce que je trouve encore 10:31
plus incroyable, c'est la façon dont 10:33
cette simple équation s'applique à un 10:35
vaste éventail de domaines scientifiques 10:37
totalement indépendants les uns des 10:39
autres. 10:41
[Musique] 10:42
La première grande confirmation 10:44
expérimentale est dévenue d'un 10:46
spécialiste de la dynamique des fluides 10:47
nommé Lipcha. Il a fabriqué une boîte 10:49
rectangulaire contenant du mercure et 10:52
utilisait un faible gradient de 10:54
température pour provoquer la 10:56
convection. Juste de cylindres de fluide 10:58
tournant en sens inverse à l'intérieur 11:01
de sa boîte. C'est tout ce que la boîte 11:03
pouvait contenir et bien sûr il ne 11:05
pouvait pas regarder à l'intérieur pour 11:07
voir ce que faisait le fluide. Alors, il 11:08
mesurait la température à l'aide d'une 11:10
sonde placée en haut. Il a observé un 11:12
pic régulier et périodique de 11:14
température. C'est comme lorsque 11:16
l'équation logistique converge vers une 11:18
seule valeur. 11:20
Mais en augmentant le gradient de 11:22
température, une oscillation à la moitié 11:23
de la fréquence initiale est apparue sur 11:25
ces cylindres roulants. Les pics de 11:28
température étaient moins élevés. 11:30
Ils alternaient entre deux hauteurs 11:33
différentes. 11:35
Il avait atteint la période 2 et en 11:36
continuant d'augmenter la température, 11:38
il a observé un doublement de période à 11:41
nouveau. Maintenant, il avait quatre 11:44
températures différentes avant que le 11:46
cycle ne se répète. Puis 8. C'était une 11:48
confirmation assez spectaculaire de la 11:51
théorie dans une expérience 11:53
magnifiquement conçue. 11:55
Mais ce n'était que le début. 11:57
Les scientifiques ont étudié la réaction 12:00
de nos yeux et des yeux de la salamandre 12:01
à des lumières clignotantes et ils ont 12:04
découvert un phénomène de doublement de 12:06
période. Une fois que la lumière atteint 12:07
un certain rythme de clignotement, nos 12:10
yeux ne réagissent plus agissent plus 12:11
qu'à un clignotement sur deux. C'est 12:14
incroyable dans ces articles de voir 12:16
apparaître le diagramme de bifurcation, 12:18
même s'il est un peu flou car il 12:20
provient de données du monde réel. 12:22
Des scientifiques ont donné un 12:25
médicament à des lapins provoquant une 12:27
fibrillation cardiaque. J'imagine qu'il 12:29
pensait en qu'il y avait trop de lapin 12:31
dehors. Enfin, si tu ne sais pas ce 12:32
qu'est la fibrillation, c'est quand ton 12:35
cœur bat de façon extrêmement 12:37
irrégulière et ne pompe quasiment plus 12:38
de sang. Et si tu n'interviens pas, tu 12:40
meurs. Ils ont découvert qu'en allant 12:42
vers la fibrillation, ils ont trouvé la 12:45
route du doublement de période menant au 12:47
chaos. 12:49
Le lapin a d'abord eu un battement 12:50
périodique puis un cycle de deux 12:52
battements rapprochés. Ensuite un cycle 12:54
de quatre battement différent avant de 12:57
recommencer et enfin un comportement 12:59
apériodique. 13:02
L'aspect remarquable de cette étude est 13:04
la surveillance en temps réel du cœur et 13:06
l'utilisation de la théorie du chaos 13:09
pour déterminer quand administrer des 13:11
chocs électriques afin de rétablir la 13:13
périodicité ce qu'ils ont réussi. Donc, 13:15
ils ont utilisé le chaos pour contrôler 13:19
un cœur et trouver une manière plus 13:21
intelligente d'administrer des chocs 13:23
électriques afin de le faire battre 13:24
normalement à nouveau. C'est vraiment 13:26
incroyable. Et puis il y a la question 13:28
du robinet qui goûte. La plupart d'entre 13:30
nous considèrent bien sûr les robinets 13:32
qui goûtent comme des objets très 13:34
réguliers et périodiques. Mais beaucoup 13:36
de recherches ont montré qu'une fois que 13:39
le débit augmente un peu, on obtient un 13:41
doublement de période. Donc maintenant, 13:43
les gouttes tombent deux par deux. 13:45
D'un simple robinet qui goûte, on peut 13:49
générer un comportement chaotique en 13:51
modifiant le débit, ce qui amène à se 13:53
demander ce qu'est vraiment un robinet. 13:55
Et bien, il y a de l'eau sous pression 13:58
constante et une ouverture de taille 13:59
constante. Et pourtant, ce que vous 14:01
obtenez, c'est un goutte à goutte 14:03
chaotique. 14:05
Donc c'est un système chaotique vraiment 14:06
simple. Vous pouvez expérimenter cela 14:08
chez vous. Allez ouvrir un robinet juste 14:10
un petit peu et voyez si vous pouvez 14:12
obtenir un goutte à goutte périodique 14:14
chez vous. 14:16
Le diagramme de bifurcation apparaît à 14:18
tellement d'endroits différents que cela 14:20
commence à sembler étrange. 14:22
Maintenant, je veux vous dire quelque 14:24
chose qui va rendre ça encore plus 14:25
étrange. Il y avait ce physicien 14:27
Mitchell Figenbum qui étudiait le moment 14:30
où les bifurcations se produisent. Il a 14:32
divisé la largeur de chaque section de 14:35
bifurcation par la suivante et il a 14:37
découvert que ce rapport converge vers 14:39
ce nombre 4,669. 14:42
ce qu'on appelle maintenant la constante 14:45
de Feigenb. 14:47
Les bifurcations surviennent de plus en 14:49
plus rapidement mais dans un rapport qui 14:51
tend vers cette valeur fixe et personne 14:53
ne sait vraiment d'où provient cette 14:56
constante. Elle ne semble se rattacher à 14:58
aucune autre constante physique connue, 15:00
si bien qu'elle constitue en elle-même 15:03
une constante fondamentale de la nature. 15:05
Ce qui est encore plus fou, c'est que il 15:08
n'est même pas nécessaire que l'équation 15:10
prenne la forme particulière que je vous 15:12
ai montré plus tôt. toute équation qui 15:13
présente une seule bosse. Si vous 15:16
l'itérez de la même manière que nous 15:19
l'avons fait, donc vous pourriez 15:20
utiliser xn + un égal sinus de x par 15:22
exemple. Si vous l'itérez encore, encore 15:25
et encore, vous verrez aussi des 15:27
bifurcations. Non seulement cela, mais 15:29
le rapport du moment où ces bifurcations 15:32
se produisent aura le même facteur 15:34
d'échelle. 4,669. 15:36
Toute fonction à une seule bosse itérée 15:40
vous donnera cette constante 15:43
fondamentale. Alors pourquoi ? Et bien 15:45
on parle d'universalité parce qu'il 15:47
semble y avoir quelque chose de 15:49
fondamental et de très universel dans ce 15:51
processus, dans ce type d'équation et 15:53
dans cette valeur constante. En 1976, 15:56
le biologiste Robertm a publié un 16:01
article dans nature à propos de cette 16:03
équation précisément. 16:06
Cela a provoqué une révolution parmi 16:08
ceux qui ont étudié ce sujet. Cet 16:10
article a d'ailleurs été cité des 16:11
milliers de fois et dans cet article, il 16:13
lance un appel pour que l'on enseigne 16:16
cette équation simple aux étudiants car 16:18
elle offre une nouvelle intuition sur la 16:21
façon dont des choses simples, des 16:23
équations simples peuvent engendrer des 16:26
comportements très complexes. 16:28
Et je pense toujours qu'aujourd'hui on 16:32
n'enseigne pas vraiment de cette façon. 16:34
Je veux dire, on enseigne des équations 16:37
simples et des résultats simples parce 16:38
que ce sont les choses faciles à faire 16:40
et ce sont celles qui semblent logiques. 16:41
On ne va pas semer le chaos chez les 16:44
étudiants, mais peut-être queon devrait 16:46
peut-être qu'on devrait en semer au 16:49
moins un peu. Et c'est pour ça que je 16:50
suis tellement enthousiaste à propos du 16:52
chaos et de cette équation parce que 16:54
franchement, comment ai-je pu atteindre 16:56
37 ans sans avoir jamais entendu parler 16:58
de la constante de Fagenbom ? 17:00
Depuis que j'ai lu le livre de James 17:04
Gleek, Koo, j'ai voulu faire des vidéos 17:05
sur ce sujet et maintenant je m'y mets 17:08
enfin et j'espère rendre justice à ce 17:10
sujet parce que je le trouve 17:12
incroyablement fascinant et j'espère que 17:14
vous aussi. 17:16

– 法语/中文 双语歌词

💥 听不懂 "" 的歌词?打开 App 学双语,提升英语实力!
作者
观看次数
2,050
语言
学习这首歌

歌词与翻译

即将推出!

我们正在更新此部分,敬请期待!

重点词汇

开始练习
词汇 含义

simple

/ˈsɪmpl/

A2
  • adjective
  • - 易于理解或做; 不复杂

année

/ane/

A2
  • noun
  • - 年

population

/ˌpɒpjʊˈleɪʃən/

B1
  • noun
  • - 居住在特定区域的人口数量

nombre

/nɔ̃br/

B1
  • noun
  • - 数字

fois

/fwa/

B1
  • noun
  • - 次

équation

/ekwaˈsjɔ̃/

B1
  • noun
  • - 方程

croissance

/kʁwasɑ̃s/

B1
  • noun
  • - 增长

maximum

/makˈsimɔm/

B2
  • noun
  • - 最大可能数量或程度

terme

/tɛʁm/

B2
  • noun
  • - 术语

fonction

/fɔ̃ksjɔ̃/

B2
  • noun
  • - 功能

valeur

/valœʁ/

B2
  • noun
  • - 值

cycle

/ˈsaɪkl/

B2
  • noun
  • - 一系列以相同顺序定期重复的事件

équilibre

/ekilibʁ/

C1
  • noun
  • - 平衡

chaos

/ˈkeɪɒs/

C1
  • noun
  • - 完全的混乱

bifurcation

/bɪfəːˈkeɪʃən/

C1
  • noun
  • - 某物分成两个分支或部分

fractal

/ˈfræktəl/

C1
  • noun
  • - 可以分成多个部分的几何形状,每个部分都是整体的缩小版

diagramme

/djagʁam/

C1
  • noun
  • - 图

constante

/kɔ̃.stɑ̃t/

C2
  • noun
  • - 常数

“simple” 在 "" 中是什么意思?

快速学习 + 深度练习 = 记得更久!App 互动练习帮你实现!

重点语法结构

即将推出!

我们正在更新此部分,敬请期待!

相关歌曲